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Mechanical model for the plasma maser effect
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A Fermi-like pinball model is proposed for the nonlinear plasma maser effect, or turbulent bremsstrahlung,
in the nonlinear interaction of plasma particles and waves. The model consists of a system of many noninter-
acting particles bouncing elastically between two oscillating walls. The walls act as energy and momentum
sources and sinks for the particles, analogous to the wave fields in a weakly turbulent plasma. The oscillation
amplitudes and frequencies of the walls determine the dynamics and distribution of the particles. The resulting
asymptotic velocity distributions agree qualitatively with existing weak turbulence theories. It is also found
that the second wall, which simulates the effect of the nonresonant wave-particle interaction, can destroy
correlations in the particle dynamics and lead to the formation of a high-energy tail in the velocity distribution.
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I. INTRODUCTION

Fermi @1# proposed that the motion of a particle bounci
between a fixed and an oscillating wall could be a model
the acceleration of cosmic rays to very high energies. Ho
ever, it was later found that indefinite acceleration, or he
ing, of the particle does not occur in general and there ex
an adiabatic limit. In fact, the particle motion is chaotic
low energies. At higher energies~velocities! its phase space
exhibits a fractal structure, exhibiting features such as
chastic islands and invariant curves with narrow isolated
chastic layers@2#. Thus the original expectation that the pa
ticle could be stochastically accelerated to very high ener
by this mechanism cannot be realized except for certain
cial cases.

Applications of Fermi-like mechanisms to collisionles
anomalous, or stochastic electron heating in laboratory
industrial plasmas have also been proposed@3#. In plasmas,
electrons can be collisionlessly heated by repeated inte
tions with localized electric or magnetic field oscillation
associated with collective plasma modes@4–6#. The latter are
randomly distributed in space if the plasma is homogene
and weakly turbulent. Such collisionless heating has b
found in rf capacitive discharges, microwave electron cyc
tron resonance discharges, as well as rf inductive dischar
It is also closely associated with the anomalous hi
frequency skin resistance in metals at low temperatures@7#.
When using the Fermi mechanism to model such proces
the prescribed oscillations of the wall simulate the fields
the normal~self-consistent! modes in the plasma. Consiste
with the quasilinear approach, the self-consistent respons
the waves to the redistribution of the momentum and ene
of the particles is neglected. Thus the model may not
applicable if the wave-particle interaction is highly nonli
ear.

In this paper we propose that a suitably generalized Fe
mechanism can be a simple mechanical model not only
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quasilinear particle energy redistribution but also for t
plasma-maser, or turbulent bremsstrahlung, effect@8–10# in
a weakly turbulent plasma. The origin of the latter effect
the interaction of the nonresonant particles with the reson
and nonresonant waves in a weakly turbulent wave-plas
system@8,9#. The contribution of the nonresonant particle
usually ignored in the standard quasilinear treatment, tu
out to be crucial for global energy and momentum conser
tion, and can affect the overall evolution of the syste
@5,6,8,9#. Here, resonant waves are waves satisfying
Cherenkov wave-particle resonance conditionv2k•v50,
where v and k are the wave frequency and wave vecto
respectively, andv is the particle velocity. Nonresonan
waves (V,K ) are waves for which neither linear nor nonlin
ear wave-particle resonance occurs. That is,V2K•vÞ0 and
V2v2(K2k)•vÞ0. An example of processes in whic
both resonant and nonresonant waves participate is the i
action of plasma particles with the~resonant! low-frequency
ion-acoustic waves and the~nonresonant! high-frequency
Langmuir waves@8,10#. Such mixed processes are releva
in wave conversions, turbulent transport, and other proce
involving large differences in wave frequency. They are
pecially important in many laboratory, space, and astroph
cal plasmas which are open systems involving external
ergy sources and sinks@8,10–13#.

II. FORMULATION

A qualitative picture for the nonlinear interaction betwe
a particle and nonresonant and resonant waves may be g
in a manner analogous to the relation between Fermi ac
eration and the classical quasilinear process@10#. We assume
that there exist randomly distributed localized regions~of
average sizel and average separationL) of electric fields
with constant magnitudeE0 but randomly distributed signs
That is, the electric field experienced by a particle pass
through each of the isolated field regions is constant and
average field of the entire system is zero. A particle mov
through such a system will encounter the positive and ne
tive field regions with the same probability. For definitiv
©2001 The American Physical Society01-1
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ness we assume positive particle charge (q.0) and positive
initial particle velocity@v(0).0#. Accordingly, in a positive
field region it gains on average an amount of energyqE0l ,
and in a negative field region it loses the same amoun
energy. A crucial point is that when the particle passe
positive field region, its velocity is increased by appro
matelyqE0l /mv, and it will need on average a shorter tim
(t1) to reach the next region containing electric field. In t
opposite case, its traveling time (t2) will be correspondingly
increased. The average increase of the particle energE
moving in such a system is then

d^E&
dt

5 K qE0l

t1
2

qE0l

t2
L

5 K qE0l

L S v1
qE0l

mv D2
qE0l

L S v2
qE0l

mv D L
5K 2q2E0

2l 2

mvL L 5
2q2L

mv
E0

2 , ~1!

whereE0
25^E0

2l 2/L2& is the mean-square electric field of th
system. This energy increase is similar to that from quasi
ear resonant wave-particle interaction@6,8#.

To include the plasma-maser effect in the present mo
it is necessary to simulate the interaction of the nonreson
particles with the resonant and nonresonant waves@8,9#. Ac-
cordingly, in addition to the resonant field regions we
clude in the system also a nonresonant~e.g., higher fre-
quency! oscillating electric field. For simplicity we examin
the case when there is an integer multiple of the wavelen
of the nonresonant field, so that over the lengthl the particle
will have an odd number of oscillations in the latter field.
the presence of such a field the particle velocity will increa
and due to the Doppler effect the particle may not have
odd number of oscillations~over the lengthl ). When the
particle leaves the resonant field region its energy will
slightly less~or slightly more, depending on the sign of th
resonant field! thanqE0l . In a sufficiently weak nonresonan
wave field this difference is proportional to the field streng
E of the nonresonant field. In other words, we haveDE6

5qE0l (17aE), wherea is a constant. Thus the averag
change of energy is

d^E&
dt

5 K DE1

L S v1
DE1

mv D2
DE2

L S v2
DE2

mv D L
5

2q2L

mv
E0

2~11a2^E2&!, ~2!

so that there exists an additional contribution to the aver
change of the particle energy due to the presence of the
resonant field. Note that this process is nonlinear~instead of
quasilinear! in the sense that the effect is proportional
^E0

2&^E2&.

III. A FERMI-LIKE MODEL

In the corresponding mechanical model the particle
ceives kicks not from the distributed electric fields but fro
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its bouncing~mirror reflecting! between two walls~1 and 2!
oscillating with amplitudesA1,2 and frequenciesv1,2 ~Fig. 1!.
In the classical Fermi-Ulam problem only one wall move
and the setup has been used successfully to model the
sical quasilinear process@3,8#. The mapping for the two-wall
problem here is somewhat more complicated. A particle
cated atXn at tn and moving towards~the right! wall 2 will
have its velocity mapped to

un115un2AF28~VQn
c2!, ~3!

Qn115Qn1
2pM2xn1AF2~VQn

c2!

2un

1
2pM2xn1AF2~VQn

c2!

2un11
, ~4!

after completion of its collision with wall 2. HereA
5A2 /A1 , V5v2 /v1, and the prime denotes derivative wit
respect to the argument. The other notations follow that co
monly used in the Fermi-Ulam problem@3#: Qn5v1tn , un
5vn/2A1v1 , M5L/2pA1 , xn5Xn /A1 , F2(Q)5sin(Q),
and Qn

c25Qn1@2pM2xn1AF2(VQn
c2)#/2un is the time

when the particle collides with wall 2. Note that the norma
izations are with respect to the parameters of wall 1.

Similarly, after the subsequent collision with~the left!
wall 1, we may write

un125un112F18~Qn11
c1 !, ~5!

Qn125Qn111
xn111F1~Qn11

c1 !

2un11
1

xn111F1~Qn11
c1 !

2un12
,

~6!

where Qn11
c1 5Qn111@xn111F1(Qn11

c1 )#/2un11 and
F1(Q)5sin(Q). The trajectory of the particle can thus b
followed numerically by similar mappings. In the case of
fixed second wall (A250), the standard mapping@3# for the
classical Fermi problem can be recovered from Eqs.~5! and
~6!.

IV. NUMERICAL SIMULATION

In the numerical computation, we start with a given d
tribution of particles and velocities. That is, the model re

FIG. 1. The two-wall pinball model: one-dimensional simul
tion configuration.
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BRIEF REPORTS PHYSICAL REVIEW E 63 067401
resents a statistical description of a generalized Fermi
tem. The equations of motion are solved using variable t
steps to obtain the time evolution of the energy of each p
ticle as well as the velocity distribution function. The tra
sient and asymptotic states of the energy distribution of
particles are examined for different frequencies and am
tudes of the wall oscillations.

For the collision of particles with the walls we consid
several cases, including the possibility of multiple collisio
~e.g., when the particle velocity is small compared with t
velocity of the wall, a similar problem was also discussed
Brahic @14#!. The following parameters are used: the leng
of the system isL51, the number of particles isN
51000–10 000, and we take 50 as the number of ou
distributions. That is, ift tot ~typically t tot5104–105) is the
total calculation time, the distributions are sampled in
time stepst i ( i 51 –50) and averaged overDt5t tot/50. Note
thatDt is not the same as the time step for the integration
the equations of motion; it is the time period for averagi
the particle distribution function.

A wide range of amplitudes and periods of wall oscill
tions and initial particle velocities is examined. The partic
are assumed to be initially located atXinit

j 5A11(L2A1

2A2)( j 20.5)/N, wherej (51, . . . ,N) denotes thej th par-
ticle and v init

j 5(21) jv init(V11V2)/2 is its initial velocity,
whereV1,25v1,2A1,2 are the velocity amplitudes of the wal
1 and 2, and for convenience an ‘‘initial velocity’’ paramet
v init has been introduced. Typically, for a time span oft tot
510 000, corresponding to the output averaging timeDt
5200, a particle with an initial velocity ofv init55 will have
bounced off the walls a few thousand times. In the followi
the subscriptj shall be dropped when we discuss a typic
particle.

First, we consider the case of very small oscillation a
plitude of the second wall:A251025 andA150.1. The pe-
riods T1,252p/v1,2 of the wall oscillations areT150.05p
andT257.1431023p. The velocity amplitudes of the wall
are thenV152 andV250.014. The effect of the second wa
is thus negligible, and we essentially obtain an evolut
similar to that for the classical Fermi problem~Fig. 2!. The
energy of a particle oscillates with time but after an initial
transient quasilinear growth it becomes constant on the
erage. It is found that for relatively small initial particle ve
locities, a plateau eventually appears in the particle ene
~momentum! distribution @Fig. 2~a!#, similar to the well-
known quasilinear energy redistribution in plasmas@4,6#. For
larger initial velocities, a change of the character of the d
tribution function at high velocities occurs. This is associa
with the formation of stochastic islands and a qualitat
change of the particle orbits in the phase space@Fig. 2~b!#.
The threshold initial velocity~obtained numerically! is uinit
'2.75 and the velocity above which the distribution chang
its character@note the sharp peak of the distribution functio
in Fig. 2~b!# is u'9, agreeing with that from the standa
Fermi mapping@3#.

We note that even for smaller initial velocities long-tim
quasilinear evolution usually leads to the formation of s
chastic islands and invariant curves@3#. However, in our
model diffusion is very weak so that for smaller initial v
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locities the system does not have time to evolve into t
regime. That is why in Fig. 2~a! we see only the quasilinea
plateau, corresponding to purely stochastic particle mot
without strong correlations. For larger initial velocities, th
corresponding transient times are smaller and we obta
qualitative change of the distribution function at higher v
locities @Fig. 2~b!#. For still larger initial velocities, the par
ticle motion rapidly goes into the strong correlation regim
and no quasilinear-type diffusion is evident in the resulti
distribution function@Fig. 2~c!#.

When the second wall oscillates at higher amplitudes,
property of the resulting distribution function chang
strongly. Foruinit53 andA251023–1022 we could not find
any end of the quasilinear evolution regime. Instead, p
ticles are accelerated to much higher velocities without
tering any strong-correlation regime in the phase space
Figs. 3~b!–3~d!, the appearance of high-energy particles
the absence of strong correlations is evident. There is als
stochastic island nor invariant curve in the phase space.
can therefore conclude that the presence of the second o
lating wall leads to a destruction of correlations for a mu
wider parameter range than in the case of a single oscilla

FIG. 2. The particle distribution function averaged at the 4
~dots! and 50th~solid lines! averaging intervals for different initia
particle velocities and very small amplitudes of second-wall vib
tion: A150.1 andA251025.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 067401
wall, as demonstrated by the lack of other qualitat
changes beside the appearance of high-energy tails in
distribution function for the cases in Figs. 3~b!–3~d!, as op-
posed to that of Fig. 3~a!. In this case particles can be acce
erated to very high energies.

FIG. 3. The particle distribution function averaged at the 4
~dots! and 50th~solid lines! averaging intervals for higher ampli
tudes of second-wall vibration, withA150.1 anduinit53.
E

06740
he

V. DISCUSSION

Our results qualitatively agree with that of the analytic
theory of the plasma-maser effect@10#, although in the latter
only a few terms were included in the nonlinear expansi
similar to the estimation given in Eq.~2!. In particular, high-
energy tails in the distribution function are formed becau
of a modification of quasilinear diffusion when the intera
tion of the nonresonant particles with the resonant and n
resonant waves~corresponding to the effect of the secon
oscillating wall in our model! is included. Moreover, the
initial stage of the quasilinear evolution is also affected
the nonlinear modulation, as exhibited by the change in
length of the transient period of stochastic diffusion when
second oscillating wall is added. In fact, according
the theory @10,13#, the nonlinear terms proportional t
^V1

2&^V2
2& are responsible for the change of character in

quasilinear evolution.
On the other hand, the result that the second oscilla

wall can efficiently destroy correlations in the particle d
namics and thereby significantly change the character of
particle distribution at higher energies could not be predic
by any simple theory based on perturbation~in the amplitude
of the waves! methods and the random-phase approximat
@10,13#.

It should be emphasized that since the motion of the w
is fixed in the present model, the self-consistent nature of
plasma waves and their evolution are in general not cove
by the Fermi model. That is, the simulation here concentra
on the direct wave-particle interactions, important to both
quasilinear and plasma-maser effects. Furthermore, inte
tion among the particles, or generation and loss due
particle-particle collisions, are precluded. In dense lo
temperature plasmas such collisions can dominate the pu
dynamical phase randomization process studied here. H
ever, inclusion of these processes would change the phy
nature of the problem, in particular with respect to the an
ogy to the classical Fermi process, so that a separate co
eration would be required.
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