PHYSICAL REVIEW E, VOLUME 63, 067401
Mechanical model for the plasma maser effect
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A Fermi-like pinball model is proposed for the nonlinear plasma maser effect, or turbulent bremsstrahlung,
in the nonlinear interaction of plasma particles and waves. The model consists of a system of many noninter-
acting particles bouncing elastically between two oscillating walls. The walls act as energy and momentum
sources and sinks for the particles, analogous to the wave fields in a weakly turbulent plasma. The oscillation
amplitudes and frequencies of the walls determine the dynamics and distribution of the particles. The resulting
asymptotic velocity distributions agree qualitatively with existing weak turbulence theories. It is also found
that the second wall, which simulates the effect of the nonresonant wave-particle interaction, can destroy
correlations in the particle dynamics and lead to the formation of a high-energy tail in the velocity distribution.
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[. INTRODUCTION quasilinear particle energy redistribution but also for the
plasma-maser, or turbulent bremsstrahlung, efféetl(] in
Fermi[1] proposed that the motion of a particle bouncinga weakly turbulent plasma. The origin of the latter effect is
between a fixed and an oscillating wall could be a model foithe interaction of the nonresonant particles with the resonant
the acceleration of cosmic rays to very high energies. Howand nonresonant waves in a weakly turbulent wave-plasma
ever, it was later found that indefinite acceleration, or heatsystem[8,9]. The contribution of the nonresonant particles,
ing, of the particle does not occur in general and there existgsually ignored in the standard quasilinear treatment, turns
an adiabatic limit. In fact, the particle motion is chaotic atOut to be crucial for global energy and momentum conserva-
low energies_ At h|gher energiéselocities its phase space tion, and can affect the overall evolution of the SyStem
exhibits a fractal structure, exhibiting features such as stok5.6.8,9. Here, resonant waves are waves satisfying the
chastic islands and invariant curves with narrow isolated stoCherenkov wave-particle resonance conditior-k-v=0,
chastic layer$2]. Thus the original expectation that the par- Where  and k are the wave frequency and wave vector,
ticle could be stochastically accelerated to very high energiegespectively, andv is the particle velocity. Nonresonant
by this mechanism cannot be realized except for certain spavaves (1,K) are waves for which neither linear nor nonlin-
cial cases. ear wave-particle resonance occurs. Thaflis;K -v#0 and
Applications of Fermi-like mechanisms to collisionless, {1 —o—(K—k)-v#0. An example of processes in which
anomalous, or stochastic electron heating in laboratory anbloth resonant and nonresonant waves participate is the inter-
industrial plasmas have also been propd®din plasmas, action of plasma particles with theesonantlow-frequency
electrons can be collisionlessly heated by repeated interaton-acoustic waves and th@gonresonant high-frequency
tions with localized electric or magnetic field oscillations Langmuir waveq8,10]. Such mixed processes are relevant
associated with collective plasma modlés6]. The latter are  in wave conversions, turbulent transport, and other processes
randomly distributed in space if the plasma is homogeneouivolving large differences in wave frequency. They are es-
and weakly turbulent. Such collisionless heating has beefecially important in many laboratory, space, and astrophysi-
found in rf capacitive discharges, microwave electron cyclo€al plasmas which are open systems involving external en-
tron resonance discharges, as well as rf inductive dischargegrgy sources and sink8,10-13.
It is also closely associated with the anomalous high-
frequency skin resista_nce in m_etals at low temperatlifgs Il FORMULATION
When using the Fermi mechanism to model such processes,
the prescribed oscillations of the wall simulate the fields of A qualitative picture for the nonlinear interaction between
the normal(self-consistentmodes in the plasma. Consistent a particle and nonresonant and resonant waves may be given
with the quasilinear approach, the self-consistent response @f a manner analogous to the relation between Fermi accel-
the waves to the redistribution of the momentum and energgration and the classical quasilinear prodd€8. We assume
of the particles is neglected. Thus the model may not bé¢hat there exist randomly distributed localized regidné
applicable if the wave-particle interaction is highly nonlin- average sizd and average separatidr) of electric fields
ear. with constant magnitud&, but randomly distributed signs.
In this paper we propose that a suitably generalized Fermfhat is, the electric field experienced by a particle passing
mechanism can be a simple mechanical model not only fothrough each of the isolated field regions is constant and the
average field of the entire system is zero. A particle moving
through such a system will encounter the positive and nega-
*Email address: s.vladimirov@physics.usyd.edu.au tive field regions with the same probability. For definitive-
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ness we assume positive particle charge-Q) and positive Agsintont) L Agsinteot)
initial particle velocity[ v (0)>0]. Accordingly, in a positive % 7
field region it gains on average an amount of eney@yl, % /
and in a negative field region it loses the same amount of - % Particles n
energy. A crucial point is that when the particle passes a %% o , :Ks
positive field region, its velocity is increased by approxi- g% T e / 2
mately qEql/mv, and it will need on average a shorter time % — //""
(t,) to reach the next region containing electric field. In the é 7
opposite case, its traveling time_() will be correspondingly _Al o Al L_'A2 i LJrAZ
increased. The average increase of the particle enérgy
moving in such a system is then FIG. 1. The two-wall pinball model: one-dimensional simula-
tion configuration.
d(€) [qEl qEl
dt _< ty t_ > its bouncing(mirror reflecting between two wall§1 and 2

oscillating with amplitude#\; , and frequencies, , (Fig. 1).
:<qE0I (U+ quI) _qEOI (v_ qE,l )> In the classical Fermi-Ulam problem only one wall moves,
L mu L mu and the setup has been used successfully to model the clas-
2212 2 sical quasilinear proce$8,8]. The mapping for the two-wall
:<2q Eol >: 29 Lg (1) problem here is somewhat more complicated. A particle lo-
mo L my 9 cated atX,, att, and moving towardsthe righy wall 2 will
have its velocity mapped to

whereE2=(E2I%/L?) is the mean-square electric field of the

system. This energy increase is similar to that from quasilin- Ups1=Un—AF5(Q0%), (3)
ear resonant wave-particle interactid®?8].
To include the plasma-maser effect in the present model, 277M — X+ AF,(QO°2)
it is necessary to simulate the interaction of the nonresonant 0,.,=0,+ n 2 n
particles with the resonant and nonresonant wa8eH. Ac- 2uy,
cordingly, in addition to the resonant field regions we in- 27M — X, + AF,(QO°2)
clude in the system also a nonresonaety., higher fre- + n 2 nc (4)
guency oscillating electric field. For simplicity we examine 2Up41

the case when there is an integer multiple of the wavelength ) ) o )
of the nonresonant field, so that over the lenigthe particle ~ after completion of its collision with wall 2. Here\
will have an odd number of oscillations in the latter field. In =A2/A1, @ =w;/w;, and the prime denotes derivative with
the presence of such a field the particle velocity will increasd®Spect to the argument. The other notations follow that com-
and due to the Doppler effect the particle may not have afonly used in the Fermi-Ulam problef8]: ®,=wst,, U,

odd number of oscillationgover the lengthl). When the =vn/2A101, M=L127A;, Xp=Xp/A;, Fy(0)=sin@),
particle leaves the resonant field region its energy will beand O =0,+[27M —x,+AF,(Q0:%)]/2u, is the time
slightly less(or slightly more, depending on the sign of the when the patrticle collides with wall 2. Note that the normal-
resonant fiellithanqE,l. In a sufficiently weak nonresonant izations are with respect to the parameters of wall 1.

wave field this difference is proportional to the field strength ~ Similarly, after the subsequent collision witlthe leff

E of the nonresonant field. In other words, we havé.  Wwall 1, we may write
=qEyl (1 aE), where« is a constant. Thus the average

change of energy is Un+2=Uns 1= F1(OF} ), ®)
e Xpe1tFuOR D) | Xnsa+tFa(OF)
dt L my L my 0h12=0, 1+ + )
2Up11 2Up42 ©
29°L— s 6
= E5(1+ a“(E?)), (2

where  OFL =0, 1+ X1 +F(OF5 ) ]/2u,,;  and

so that there exists an additional contribution to the averagE1(®)=sin(®). The trajectory of the particle can thus be
change of the particle energy due to the presence of the nofR!lowed numerically by similar mappings. In the case of a
resonant field. Note that this process is nonlingestead of ~ fixed second wall4,=0), the standard mappirig] for the
quasilineay in the sense that the effect is proportional to ¢lassical Fermi problem can be recovered from Efsand

2
(Eo)(E?).
lll. A FERMI-LIKE MODEL IV. NUMERICAL SIMULATION

In the corresponding mechanical model the particle re- In the numerical computation, we start with a given dis-
ceives kicks not from the distributed electric fields but fromtribution of particles and velocities. That is, the model rep-
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resents a statistical description of a generalized Fermi sys- 2 | . .

tem. The equations of motion are solved using variable time (8) u,=2.50
steps to obtain the time evolution of the energy of each par-
ticle as well as the velocity distribution function. The tran-
sient and asymptotic states of the energy distribution of the
particles are examined for different frequencies and ampli-
tudes of the wall oscillations.

For the collision of particles with the walls we consider
several cases, including the possibility of multiple collisions
(e.g., when the particle velocity is small compared with the
velocity of the wall, a similar problem was also discussed by
Brahic [14]). The following parameters are used: the length
of the system isL=1, the number of particles idN
=1000-10000, and we take 50 as the number of output
distributions. That is, ift,y (typically t,,,=10*~1®) is the
total calculation time, the distributions are sampled in 50
time stepg; (i=1-50) and averaged ovért =t,,/50. Note
thatAt is not the same as the time step for the integration of
the equations of motion; it is the time period for averaging
the particle distribution function.

A wide range of amplitudes and periods of wall oscilla-
tions and initial particle velocities is examined. The particles
are assumed to be initially located xf;=A;+(L—A;
—A2)(j—0.5)/N, wherej (=1, ... N) denotes thgth par-
ticle andv);=(—1)vin(V1+V,)/2 is its initial velocity,
whereV; ,= w; JA; , are the velocity amplitudes of the walls
1 and 2, and for convenience an “initial velocity” parameter
vinit has been introduced. Typically, for a time spantgf
=10000, corresponding to the output averaging titie
=200, a particle with an initial velocity af;,;=5 will have
bounced off the walls a few thousand times. In the following
the subscripj shall be dropped when we discuss a typical
particle.

First, we consider the case of very small oscillation am-

: 5 - i
plitude of the second wallh,=10"" andA;=0.1. The pe (dotg and 50th(solid lines averaging intervals for different initial

riods Ti2= 277/“’1;23 ks O.SC'"at'O,nS ard,=0.05m particle velocities and very small amplitudes of second-wall vibra-
andT,=7.14<10 “ar. The velocity amplitudes of the walls . A,=0.1 andA,=10"5.

are thenv;=2 andV,=0.014. The effect of the second wall

is thus negligible, and we essentially obtain an evolutionlocities the system does not have time to evolve into that
similar to that for the classical Fermi problefig. 2). The  regime. That is why in Fig. @) we see only the quasilinear
energy of a particle oscillates with time but after an initial or Plateau, corresponding to purely stochastic particle motion
transient quasilinear growth it becomes constant on the awithout strong correlations. For larger initial velocities, the
erage. It is found that for relatively small initial particle ve- corresponding transient times are smaller and we obtain a
locities, a plateau eventually appears in the particle energlu@litative change of the distribution function at higher ve-
(momentum distribution [Fig. 2@)], similar to the well- QC|t|es[E|g. 2(b)_]. For stlll_larger initial velocmes,_the par-
known quasilinear energy redistribution in plasr@$]. For ticle motion r_a}pldly goes Into Fhe strong cor(elatlon regime
larger initial velocities, a change of the character of the dis-and no quasilinear-type diffusion is evident in the resulting

tribution function at high velocities occurs. This is associatead'Swﬁggﬂﬂgu::éf:g:ﬁélIzg:s);l:'i”ates at higher amplitudes, the
\évr;t:nézeo:‘otrgaggpticol; ‘:’)t%?gaisnt'?h'esﬁﬁg:easnsmag.q;(zl)'iét'veproperty of the resulting distribution function changes

e . . Y strongly. Foru,;=3 andA,=103-10 2 we could not find
The threshold initial velocityobtained numericallyis uj any end of tr']”e” quasiline%ar evolution regime. Instead, par-

~2.75 and the velocity above which the distribution changesjcies are accelerated to much higher velocities without en-
its charactefnote the sharp peak of the distribution function tering any strong-correlation regime in the phase space. In
in Fig. 2Ab)] is u~9, agreeing with that from the standard Figs.  3b)—3(d), the appearance of high-energy particles in
Fermi mappingd 3]. the absence of strong correlations is evident. There is also no
We note that even for smaller initial velocities long-time stochastic island nor invariant curve in the phase space. We
quasilinear evolution usually leads to the formation of sto-can therefore conclude that the presence of the second oscil-
chastic islands and invariant curvg€3]. However, in our lating wall leads to a destruction of correlations for a much
model diffusion is very weak so that for smaller initial ve- wider parameter range than in the case of a single oscillating

velocity distribution

(®) w,=2.75

velocity distribution

(©) u,=3.00

velocity distribution

L
24 4 30

(@) uy=4.50
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FIG. 2. The particle distribution function averaged at the 4th
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2 T T T V. DISCUSSION

Our results qualitatively agree with that of the analytical
theory of the plasma-maser effdd0], although in the latter
- only a few terms were included in the nonlinear expansion,
similar to the estimation given in E¢R). In particular, high-
energy tails in the distribution function are formed because
of a modification of quasilinear diffusion when the interac-
30 tion of the nonresonant particles with the resonant and non-
resonant wavescorresponding to the effect of the second
oscillating wall in our modsel is included. Moreover, the
initial stage of the quasilinear evolution is also affected by
the nonlinear modulation, as exhibited by the change in the
7 length of the transient period of stochastic diffusion when the
second oscillating wall is added. In fact, according to
the theory[10,13, the nonlinear terms proportional to
(V3)(V3) are responsible for the change of character in the
30 quasilinear evolution.

On the other hand, the result that the second oscillating
© Ay=3x10° wall can efficiently destroy correlations in the particle dy-
namics and thereby significantly change the character of the
particle distribution at higher energies could not be predicted
by any simple theory based on perturbatignthe amplitude

of the wavey methods and the random-phase approximation
[10,13.

It should be emphasized that since the motion of the walls
is fixed in the present model, the self-consistent nature of the
3 plasma waves and their evolution are in general not covered
(@) A=5x10 by the Fermi model. That is, the simulation here concentrates
on the direct wave-particle interactions, important to both the
quasilinear and plasma-maser effects. Furthermore, interac-
tion among the particles, or generation and loss due to
particle-particle collisions, are precluded. In dense low-

. P temperature plasmas such collisions can dominate the purely
0 12 ” 36 28 60 dynamical phase randomization process studied here. How-
ever, inclusion of these processes would change the physical

FIG. 3. The particle distribution function averaged at the 4thnature of the problem, in particular with respect to the anal-
(dots and 50th(solid lines averaging intervals for higher ampli- 0@y to the classical Fermi process, so that a separate consid-
tudes of second-wall vibration, with;=0.1 andu,;,=3. eration would be required.
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